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Abstract

Stress-associated disorders such as melancholic depression are characterized by persistent hypothalamic–pituitary–adrenocortical (HPA)

axis activation and intensive anxiety. Corticotropin-releasing hormone (CRH) appears to play an essential role in pathophysiology of such

disorders. In an attempt to elucidate possible mechanisms underlying persistent activation of CRH in the central nervous system (CNS), we

examined responses of hypothalamic and extrahypothalamic CRH systems to the stressors (immobilization stress or psychological stress) and

interactions between these CRH systems and glucocorticoids in rats. We propose multiple feedback loops activating central CRH system: (1)

attenuation of glucocorticoid-induced negative feedback on the activity of the hypothalamic and brainstem nuclei during chronic stress, (2)

autoregulation of CRH biosynthesis in the hypothalamic paraventricular nucleus (PVN) through up-regulation of Type-1 CRH receptor

(CRHR-1), and (3) glucocorticoid-mediated positive effects on the amygdaloid CRH system. Stress initially activates the hypothalamic CRH

system, resulting in the hypersecretion of glucocorticoids from the adrenal gland. In addition, the psychological component of the stressor

stimulates the amygdaloid CRH system. In the chronic phase of stress, down-regulation of GR in the PVN and other brain structures such as

the locus coeruleus (LC) fails to restrain hyperfunction of the HPA axis, and persistent activation of the HPA axis further up-regulates the

amygdaloid CRH system. Thus, the hypothalamic and the amygdaloid CRH systems cooperatively constitute stress-responsive, anxiety-

producing neurocircuitry during chronic stress, which is responsible for the clinical manifestations of stress-associated disorders. Effects of

tricyclic antidepressants (TCAs), which appear to mitigate the above mentioned multiple feedback loop forming the vicious circle to activate

central CRH systems, will also be discussed. D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Corticotropin-releasing hormone (CRH) is a key neuro-

peptide integrating hormonal, autonomic and behavioral

responses to stress (Brown and Fisher, 1990; Menzaghi

et al., 1993; Whitnall, 1993). CRH, which is synthesized

in the paraventricular nucleus (PVN) of the hypothalamus,

is released in the hypophyseal portal circulation to activate

the pituitary–adrenocortical axis during stress (Whitnall,

1993). Glucocorticoids, final products of the hypothalamic–

pituitary–adrenocortical (HPA) axis, are secreted from the

adrenal cortex and exert a negative feedback effect on the

biosynthesis and release of CRH in the PVN and ACTH in

the anterior pituitary (AP), resulting in the termination of

stress-induced HPA axis activation (Dallman et al., 1992).

Chrousos and Gold (1992) have described the behavioral

and physical adaptation during stress. Behavioral adaptation

includes arousal, vigilance, focused attention and suppres-

sion of vegetative function such as feeding and reproductive

behavior. On the other hand, physical adaptation includes

increased blood pressure and heart rate, inhibition of the

growth and reproductive system, and containment of im-

mune responses. The most important adaptational response,

however, is the containment of the stress responses mainly

through glucocorticoids. They defined stress syndrome as a

failure of adequate counterregulation (i.e., maladaptational

responses to stress), and divided stress-associated disorders

into two categories (Chrousos and Gold, 1992). One is

associated with increased stress system activity, including

melancholic depression, anorexia nervosa, panic anxiety,
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and so on; the other includes diseases with decreased stress

system activity, such as atypical depression and posttrau-

matic stress disorder.

In this short review, we focus on the former type of

stress-associated disorders such as melancholic depression.

Thus, stress-associated disorders in humans, categorized as

increased stress system activity, are characterized by per-

sistent HPA axis activation and intensive anxiety (Gold and

Chrousos, 1998). Patients with such disorders appear to

escape from glucocorticoid negative feedback, as indicated

by centrally mediated hypercortisolemia and lack of dex-

amethasone suppressiveness. Since maladaptational stress

responses resemble the effects of central administration of

CRH, CRH is thought to play an essential role in stress-

associated disorders such as melancholic depression and

anorexia nervosa (Gold and Chrousos, 1998).

In rats, repeated immobilization is one chronic stress in

which the HPA axis is persistently activated, homologous to

stress-associated disorders. We attempt to reveal mecha-

nisms that maintain HPA axis activation in the central

nervous system (CNS) using repeated immobilization as a

chronic stress model. Immobilization stress originated from

Kvetnansky and Mikulaj (1970), placing the rats’ head

through two stainless steel loops and taping the limbs to a

stainless platform with their dorsal surface up. Peripheral

and central responses to repeated immobilization are sum-

marized in Table 1. We found that multiple feedback loops

activate the central CRH system by: (1) attenuation of

glucocorticoid-induced negative feedback on the activity

of the hypothalamic and brainstem nuclei, (2) autoregulation

of CRH biosynthesis in the PVN through up-regulation of

Type-1 CRH receptor (CRHR-1), and (3) glucocorticoid-

mediated positive effects on the CRH system in the amyg-

dala (Fig. 1). We also discuss the therapeutic effects of

antidepressants on neuropeptides involved in the central

stress responses, such as arginine vasopressin (AVP), neuro-

peptide Y (NPY), as well as CRH. Tricyclic antidepressants

(TCAs) appear to mitigate the abovementioned multiple

feedback loop forming the vicious circle to activate central

CRH systems. Based on our own work, we make a brief

review of the relevant articles (for reviews, see Koob, 1999;

Korte, 2001; Schulkin et al., 1998).

Table 1

Peripheral and central responses to repeated immobilization for 7–14 days

Food intake #
Body weight #
Plasma corticosterone ""
Plasma ACTH "

PVN

CRH mRNA "
AVP mRNA ""
GR mRNA ##
MR mRNA !
CRHR-1 mRNA "
CRHR-2 mRNA !

Anterior pituitary

POMC mRNA "
GR mRNA !
MR mRNA !
CRHR-1 mRNA #

Locus coeruleus

TH mRNA "
NPY mRNA "
GR mRNA ##

Hippocampus (CA1–3, DG)

GR mRNA ##
MR mRNA !

Arcuate nucleus

NPY mRNA "
POMC mRNA #
Galanin mRNA !

Ventromedial hypothalamus

CRHR-2 mRNA #
The arrows denote an increase ("), decrease (#), or no change (! ) relative

to the control group. Data are taken from Makino et al. (1995a,b, 1999a,b,

2002 (in press)).

Fig. 1. Multiple feedback loops activating CRH systems during chronic

stress. Stress initially activates the hypothalamic CRH system (i.e., CRH in

the PVN), resulting in the hypersecretion of glucocorticoids from the

adrenal gland. In addition, the psychological component of the stressor

stimulates the amygdaloid CRH system (i.e., CRH in the central nucleus of

the amygdala). Glucocorticoids exert GR-mediated negative feedback

effects on the biosynthesis and release of CRH in the PVN and ACTH in

the AP directly or indirectly through the brainstem catecholaminergic nuclei

such as the LC, resulting in the termination of stress-induced HPA axis

activation. In the chronic phase of stress, down-regulation of GR in the

PVN and other brain structures such as the LC fails to restrain hyper-

function of the HPA axis. Increased CRH in the PVN also induces a pu-

tative ultrashort positive feedback effects on its own biosynthesis through

up-regulation of PVN CRHR-1. The persistent activation of the HPA axis

further up-regulates the amygdaloid CRH system involved in the expression

of fear and anxiety, and the amygdala may have stimulatory effects on the

HPA axis. Thus, the hypothalamic and the amygdaloid CRH systems

cooperatively constitute stress-responsive, anxiety-producing neurocircuitry

during chronic stress.
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2. Attenuation of glucocorticoid-induced negative

feedback on the activity of the hypothalamic and

brainstem nuclei

Melancholic depression is a representative disorder asso-

ciated with psychological and/or physical stressors in the

daily life. The manifestations of this type of depression

appear to be related to centrally mediated hypercortisolemia.

Patients with melancholic depression often show increased

CRH concentration in the cerebrospinal fluid and a lack of

dexamethasone suppressiveness (Nemeroff et al., 1984;

Gold et al., 1988), indicating the persistent activation of

the central CRH system that has escaped from containment

by high circulating cortisol. Which brain sites are involved

in the activation of the CRH system? One of the most

probable sites is the PVN, because PVN CRH neurons are

known to stimulate the pituitary–adrenocortical axis. In

fact, human studies revealed increased CRH and CRH/

AVP-expressing neurons and elevated CRH mRNA levels

in the PVN in depressed patients (Raadsheer et al., 1994,

1995). Then, why and how does the PVN CRH system

escape from glucocorticoid-mediated negative feedback that

normally exerts itself to limit overshoot of the HPA axis

responsiveness to the stressor?

To elucidate this ‘paradoxical’ rise of the PVN CRH

system during chronic stress, we compared the differential

central and peripheral responsiveness to acute or repeated

immobilization stress in sham vs. adrenalectomized, cortico-

sterone replaced (ADX+CORT) rats (Makino et al.,

1995a,b, 2002 (in press)). We found that responses of

CRH mRNA in the PVN and tyrosine hydroxylase (TH),

a rate-limiting enzyme of catecholamine biosynthesis

mRNA in the locus coeruleus (LC), increased following

acute and repeated immobilization both in sham and ADX+

CORT rats. The magnitude of the increases in CRH and TH

mRNAs was smaller in sham rats than in ADX+CORT rats

following acute stress, indicating an intact glucocorticoid

feedback inhibition on these mRNAs. In contrast, the

magnitude of the increases in CRH and TH mRNAs was

similar in both sham and ADX+CORT rats following

repeated stress, suggesting an attenuation of glucocorticoid

feedback inhibition during chronic stress. Interestingly, a

reduction of GR mRNA in the hippocampus, the PVN, and

the LC was observed following repeated stress only in sham

(adrenally intact) rats. The results suggest that the gluco-

corticoid-dependent reduction of GR mRNA in multiple

regions in the brain is associated with a decrease in the

capacity of glucocorticoids to restrain the hypothalamic

secretagogues that activate the pituitary corticotroph cells

during chronic stress. Acute immobilization caused a sig-

nificant increase in AVP mRNA in the PVN in ADX+

CORT rats, but not in sham rats, whereas repeated immob-

ilization resulted in a robust increase in PVN AVP mRNA

both in sham and ADX+CORT rats. These data indicate that

PVN AVP mRNA levels are more sensitive to glucocorti-

coid negative feedback than are the levels of CRH mRNA.

During chronic or repeated stress, a relative shift could occur

to AVP-mediated pituitary–adrenal activation (Hashimoto

et al., 1988; Whitnall, 1989, 1993; De Goeij et al., 1991,

1992; Scaccianoce et al., 1991; Bartanusz et al., 1993) as a

consequence of a reduction in the critical negative feedback

stimuli to a highly sensitive target. Furthermore, a greater

responsivity of AVP than CRH to chronic stimulatory stress

input (Whitnall et al., 1993) (e.g., catecholaminergic input

from the brainstem nuclei such as the LC) may contribute to

the shift from CRH to AVP in the PVN.

In the above mentioned report (Makino et al., 1995a,b),

we found an association in sham rats exposed to repeated

stress between (1) decreases in GR mRNA levels in the

hippocampus and the PVN, and (2) robust responses of

PVN CRH and AVP mRNA levels to repeated stress despite

high plasma CORT levels. Our data appeared to be com-

patible with two other separate findings: (1) stress down-

regulates hippocampal GR (Sapolsky et al., 1984; Jacobson

and Sapolsky, 1991; Chao et al., 1993; Brooke et al., 1994;

Johren et al., 1994; Herman et al., 1995) and (2) hippo-

campal lesions increase CRH and AVP secretion in the PVN

(Sapolsky et al., 1989; Herman et al., 1989, 1992; Jacobson

and Sapolsky, 1991). These two findings, however, now

need to be revisited.

First, our data suggest that down-regulation of hippo-

campal GR mRNA during repeated immobilization is glu-

cocorticoid-dependent (Makino et al., 1995b). Consistent

with this, several in vitro studies have shown a glucocorti-

coid-induced decrease in GR transcription (Okret et al.,

1986; Dong et al., 1988; Vedeckis et al., 1989). Changes

in hippocampal GR, however, depend on the type of the

stressors, but not on the elevated plasma CORT per se

(Herman, 1993; Herman et al., 1999; Clark et al., 1994;

Kabbaj et al., 1996; Kitraki et al., 1999). Recently, we have

also reported lack of decrease in hippocampal and hypo-

thalamic GR mRNA during starvation despite a robust

increase in plasma CORT, suggesting that hippocampal

GR mRNA is not solely regulated by circulating CORT

(Makino et al., 2001). A wide variety of neurotransmitters,

which are regulated differentially in distinct stressors, may

be involved in the regulation of hippocampal GR mRNA

and/or binding (Herman, 1993). A recent study has shown

the regulation of hippocampal GR or GR mRNA by

catecholamines (through a b-adrenergic receptor), NMDA,

or GABA-A receptors (Tritos et al., 1999).

Second, effects of hippocampal GR on HPA axis feed-

back regulation are now being revised. Accumulating

evidence suggests that hippocampal MR activation main-

tains hippocampal excitability that relays GABAergic

inhibitory tones to the PVN (Joels and deKloet, 1992;

Herman and Cullinan, 1997; De Kloet et al., 1998);

therefore, hippocampal MR appears to mediate the inhib-

itory effect of glucocorticoids in maintaining a basal HPA

tone. In contrast, GR activation suppresses the hippocam-

pal output (Joels and deKloet, 1992; De Kloet et al., 1998),

theoretically resulting in the disinhibition of the HPA axis.
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van Haarst et al. (1997) demonstrated that an intracerebro-

ventricular injection of GR antagonist increased plasma

ACTH and CORT levels at the diurnal peak, whereas the

intrahippocampal injection of GR antagonist produced an

opposite, inhibitory effect, indicating a positive glucocorti-

coid feedback influence on the HPA axis through hippo-

campal GR. They proposed the importance of GR in the

PVN itself in the glucocorticoid-mediated restraint of the

activity of PVN CRH and AVP neurons, based on previous

reports showing suppression of CRH biosynthesis by local

administration of glucocorticoids (Kovacs and Mezey,

1988; Kovacs et al., 1986; Sawchenko, 1988), and sug-

gested that feedback inhibition through GR in the PVN

may override a positive feedback effect through hippo-

campal GR. In this context, decreased GR mRNA levels in

the PVN rather than in the hippocampus are important for

the attenuation of glucocorticoid-induced negative feedback

on the activity of PVN CRH and AVP neurons during

repeated immobilization stress. In line with this notion,

genetically impaired GR function is associated with hyper-

function of PVN CRH neurons (Tronche et al., 1999),

although this is not always the case (van Haarst et al.,

1996; Dijkstra et al., 1998).

Third, in addition to GR, an involvement of brain MR in

the pathophysiology of melancholic depression has also

drawn attention. Chronic antidepressant treatment raises

hippocampal MR density (as well as hippocampal GR

density), which appears to be associated with attenuation

of CRH in the PVN and the HPA axis activity (Brady et al.,

1991; Seckl and Fink, 1992; Reul et al., 1993, 1994;

Bjartmar et al., 2001). As noted above, hippocampal MR

is thought to play a principal role in the negative feedback

effects of glucocorticoids primarily on the basal HPA tone

at both the trough and peak of the diurnal cycle (Dallman

et al., 1989; Ratka et al., 1989; Bradbury et al., 1994; van

Haarst et al., 1997). Recently, Reul and Holsber’s group

extended this notion and showed the inhibitory role of MR

in the HPA axis during stress. Reul et al. (1997) reported

that, using intracerebroventricular injection of antisense

oligonucleotide against MR for 1 week, down-regulation

of brain MR produced an enhanced responsiveness of

plasma ACTH following social defeat. Likewise, Gesing

et al. (2001) found that psychologically stressful events

such as novelty and forced swimming increased hippo-

campal MR and the rise in MR was associated with a tonic

inhibition of the HPA axis activity following stress. They

also suggested the possible link between CRH system

activation and increased MR function during stress. How-

ever, there is limited evidence showing decreased MR

(either mRNA, number, binding, or function) during

chronic or persistent stress (Herman et al., 1999) and

attenuation in the inhibitory effects of MR on the HPA axis

during stress. The exact role of MR vs. GR in dysregulation

of the HPA axis during chronic stress and that in the

pathophysiology of stress-associated disorders has yet to

be elucidated.

3. Autoregulation of CRH biosynthesis in the PVN

through up-regulation of CRHR-1

Ono et al. (1985) reported that an intraventricular injec-

tion of ovine CRH applied 5 min prior to stress significantly

enhanced increase in plasma ACTH following ether stress.

They postulated that the enhancement of ACTH response to

stress was attributable to the activation of CRH neurons in

the PVN by applied CRH. Such a putative ultrashort

positive feedback of CRH on its own biosynthesis within

the PVN has recently drawn attention since the cloning of

classical CRH receptor in 1993 (Perrin et al., 1993). It was

termed CRHR-1 after the discovery of a novel subtype of

CRH receptor designated Type-2 CRH receptor (CRHR-2)

(Kishimoto et al., 1995; Lovenberg et al., 1995; Perrin et al.,

1995; Stenzel et al., 1995). We, and others, have found that

CRHR-1 mRNA in the PVN increases during various types

of the stressor (Luo et al., 1994; Makino et al., 1995a;

Rivest et al., 1995). Since a central administration of CRH

increases both CRH mRNA and CRHR-1 mRNA in the

PVN (Imaki et al., 1996; Mansi et al., 1996), CRH may be

capable of up-regulating CRHR-1, resulting in enhancing its

own biosynthesis in the PVN in a paracrine or autocrine

manner. In this context, positive effects of CRH on its own

receptor (CRHR-1), and vice versa, may represent one

mechanism of persistent activation of CRH neurons in the

PVN during stress. However, up-regulation of CRHR-1

through CRH has not definitively been proven, because

we have found that adrenalectomy, which is known to

increase CRH biosynthesis dramatically, decreases CRHR-1

mRNA in the PVN (Makino et al., 1995a, 1997).

The regulations of CRHR-1 mRNA in the PVN by

molecules other than CRH have been examined by several

investigators. We have already found that brainstem hemi-

section attenuated immobilization stress-induced increase in

CRHR-1 mRNA ipsilaterally in the PVN (Makino et al.,

1995a). Since our hemisection damages at least ascending

noradrenergic bundle and results in the significant reduction

of noradrenaline concentration ipsilaterally in the PVN

(Pacak et al., 1993; Palkovits et al., 1999), our finding

may reflect the up-regulation of PVN CRHR-1 mRNA by

noradrenergic input from the brainstem during stress. How-

ever, this is not always the case (Kiss et al., 1996).

4. Glucocorticoid-mediated positive effects on the

amygdaloid CRH system

The amygdala is part of the neural circuit involved in the

expression of conditioned fear and anxiety (LeDoux, 1992;

Davis, 1998; Fendt and Fanselow, 1999). Among the

amygdaloid subnuclei, the central nucleus of the amygdala

(CEA) is another main source of CRH-producing cells in the

brain (Gray, 1990). Accumulating evidence suggests that

activation of CRH receptors in the CEA and/or CRH path-

ways emanating from the CEA plays an important role in
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fear-related behaviors. Electrical lesions of the CEA abol-

ished the behavioral effects of centrally administered CRH

such as conditioned startle reflex (Liang et al., 1992), while

chemical lesions of the CEA blocked fear-potentiated startle

reflex (Lee and Davis, 1997). The direct injection of CRH

antagonist, a-helical CRH, into the CEA also diminished

the stress-evoked freezing (Swiergiel et al., 1993) or

reduced emotionality in socially defeated rats (Heinrichs

et al., 1992). Interestingly, Pich et al. (1995) reported that

pharmacological blockade of voltage-dependent KA-channel

applied to the CEA neurons increased both CRH levels in

the extracellular fluid and several behavioral indices of

arousal, indicating the possible link between CRH in the

CEA and fear-related behavior. These functional data sug-

gest that activated amygdaloid CRH system contributes to

intensive anxiety in many depressive patients.

Alterations in the amygdaloid CRH system vs. alterations

in the hypothalamic CRH system in the variety of situations

are shown in Table 2. Kalin et al. (1994) reported that acute

restraint increased CRH mRNA in the CEA using both

RNase protection assay and in situ hybridization histochem-

istry (ISHH) (Hsu et al., 1998). A study using in vivo

microdialysis demonstrated increased CRH levels in the

CEA following restraint stress or ethanol withdrawal (Pich

et al., 1995; Merali et al., 1998; Richter et al., 2000).

Although we failed to show a significant change in CEA

CRH mRNA following acute immobilization (Pacak et al.,

1996), we found that psychological stress resulted in a

dramatic increase in both CRH mRNA levels, as assessed

by ISHH, and CRH content, as assessed by micropunch

RIA, in the CEA (Makino et al., 1999b). Similarly, sub-

ordinate rats in the visible burrow system model of chronic

social stress showed increased CRH mRNA expression in

the CEA (Albeck et al., 1997). It should be noted that

stressors, which contain more physical or metabolic com-

ponents, such as salt-loading (Watts, 1992), cold (Makino

et al., 1994a), or starvation (Makino et al., 2001) can lead to

decreased CEA CRH mRNA. Thus, psychological compo-

nents of the stressor could activate the amygdaloid CRH

system, but the balance between the psychological and the

physical component of the stressor may determine the

responsivity of the amygdaloid CRH system. Greater res-

ponsiveness of the amygdaloid CRH system to a psycho-

logical component of the stressor supports the hypothesis

provided by Herman and Cullinan (1997) that limbic stress

pathways are sensitive to stressors involving higher-order

sensory processing, but are insensitive to simple physical

threats. Alternatively, stimulation of CRH in the CEA may

require prior conditioning by virtue of pairing with an aver-

sive event rather than unconditioned anxiogenic effect of the

stressor (Davis, 1998). Nevertheless, in view of stimulatory

effects of psychological component of the stressor on the

amygdaloid CRH system, it is of interest that chronic admi-

nistration of the triazolobenzodiazepine agonist alprazolam

decreased CRH mRNA in the CEA and CRHR-1 mRNA

expression and receptor binding in the basolateral amygdala

(Skelton et al., 2000).

We have also shown that a high dose of CORT replace-

ment increased CRH mRNA in the CEA, whereas it reduced

CRH mRNA expression in the medial parvocellular part

of the PVN (Makino et al., 1994b). This ‘‘positive’’ effect

of glucocorticoids has also been reported by a number of

laboratories (Swanson and Simmonds, 1989; Watts, 1996).

A decrease in CRH mRNA in the CEA following adrena-

lectomy has also been shown (Swanson and Simmonds,

1989; Watts and Sanchez-Watts, 1995; Palkovits et al.,

1998). Although direct effects of glucocorticoids on cul-

tured amygdalar neurons are not evident (Kasckow et al.,

1997), Shepard et al. (2000) recently demonstrated that

stereotaxic delivery of corticosterone to the amygdala in-

creased basal CRH mRNA levels in the CEA and increased

indices of anxiety on the elevated plus-maze. Mechanisms

underlying positive vs. classical negative glucocorticoid

effects are uncertain, but differential combinations of glu-

cocorticoid-responsive neurotransmitters or transcription fac-

tors in the CEA vs. the PVN may be responsible for it.

The amygdaloid CRH system may have a direct stim-

ulatory effect on the HPA axis (Allen and Allen, 1975;

Beaulieu et al., 1986, 1989; Van de Kar et al., 1991;

Feldman et al., 1994), potentially activating a positive

feedback loop between hypercortisolism and amygdala-

mediated fear responses. Alternatively, a recent report has

shown the innervation of CRH neurons in the CEA to the

LC (Van Bockstaele et al., 1998). A stress-induced increase

in CRH release from the nerve terminals emanating from the

Table 2

Responses of amygdala vs. hypothalamic CRH

Treatment

CRH in

PVN

CRH in

CEA References

Immobilization " ! (Pacak et al., 1996)

Restraint " " (Hsu et al., 1998;

Kalin et al., 1994;

Merali et al., 1998;

Pich et al., 1995;

Richter et al., 2000)

Psychological

stress

! " (Makino et al., 1999b)

Chronic social

stress

(subordinates)

! or # " (Albeck et al., 1997)

Hypertonic

saline

# # (Watts, 1992)

Cold exposure ! # (Makino et al., 1994a,b,c)

Starvation # # (Makino et al., 2001)

Glucocorticoids ## " (Makino et al., 1994b;

Shepard et al., 2000;

Swanson and Simmonds,

1989; Watts, 1996)

Antidepressants # ?? (Brady, 1994;

Brady et al., 1991)

Benzodiazepines # # (Skelton et al., 2000)

The arrows denote an increase ("), decrease (#), or no change (!) relative

to the control group.
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CEA could potentially increase CRH content in the LC,

which activates LC neurons resulting in the stimulation of

ACTH secretagogues such as CRH and AVP in the PVN

and the stimulation of arousal-producing pathways (Chap-

pell et al., 1986; Butler et al., 1990; Koegler-Muly et al.,

1993; Valentino et al., 1993).

Another brain site, which is anatomically and function-

ally related to the amygdala (thus called the extended

amygdala), is the bed nucleus of the stria terminalis (BNST)

(Rosen and Schulkin, 1998). Davis (1998) has proposed that

highly processed explicit cue information activates the

CEA, whereas less explicit information activates the BNST;

the CEA or the BNST in turn activates hypothalamic and

brainstem target areas involved in conditioned fear or

anxiety, respectively. There have also been several reports

showing the involvement of the BNST in unconditioned fear

(Henke, 1984; Casada and Dafny, 1991; Gray et al., 1993)

or in HPA axis regulation (Dunn, 1987; Feldman et al.,

1990; Herman et al., 1994). Among subdivisions in the

BNST, the dorsolateral part of the BNST (BSTLD) is

anatomically associated with the CEA (Gray, 1989). Inter-

estingly, as with in the CEA, CRH mRNA in the BSTLD is

positively regulated by glucocorticoids (Makino et al.,

1994b,c) and is elevated following psychological stress

(Makino et al., 1999b). The parallel changes in CRH mRNA

in the CEA and the BSTLD have also been observed in

response to cold (Makino et al., 1994a) and salt-loading

(Watts, 1996). Since the CRH neurons in the BNST also

target the LC dendrites, the BNST CRH neurons could be

part of the neurocircuitry involved in the HPA hyperactivity

during chronic stress through eliciting LC neuronal activity

(Van Bockstaele et al., 1998; Koob, 1999).

Similarly, it is of great interest that glucocorticoids

increased CRH mRNA expression in the dorsal parvocel-

lular part of the PVN (Swanson and Simmonds, 1989),

which project to the autonomic cell groups in the brainstem

and the spinal cord including the LC and the NTS (Swanson

and Sawchenko, 1983; Sawchenko, 1989; Van Bockstaele

et al., 1998). It is possible that the descending CRH-nergic

projection from the PVN to the LC also participates in the

part of the neural circuits that continuously activates the LC

neurons during chronic stress. The possible functional

connection between the CEA, BNST, PVN and the LC is

shown in Fig. 2.

Taken together, stress initially activates the hypothalamic

CRH system, resulting in the hypersecretion of glucocorti-

coids from the adrenal gland. On the other hand, the

psychological component of the stressor stimulates the

amygdaloid CRH system (in the CEA and the BSTLD). In

the chronic phase of stress, down-regulation of GR in the

PVN fails to restrain hyperfunction of the HPA axis, and

persistent activation of the HPA axis in turn up-regulates the

amygdaloid CRH system. Thus, the hypothalamic and

amygdaloid CRH systems cooperatively constitute stress-

Fig. 2. The possible functional connection between the CEA, the BNST, the hypothalamic PVN, and the LC. CRH neurons emanating from the CEA and the

BSTLD, and possibly from the dorsal parvocellular part of the PVN (dpPVN), innervate the LC dendrites. Released CRH elicits the LC neuronal activity which

in turn activates the target forebrain structures including CRH neurons in the CEA, the BNST, and the medial parvocellular part of the PVN (mpPVN) through

NE neurotransmission. Such a putative closing loop could explain the potentiation of stress responses during chronic stress and thus the pathophysiology of

stress-associated disorders such as melancholic depression. Note that the projections from the LC to the forebrain structures and those from the CEA and the

BNST to the brainstem structures are involved in the behavioral responses such as fear and anxiety, whereas the LC–PVN loop maintains the persistent

activation of the HPA axis.
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responsive, anxiety-producing neurocircuitry during chronic

stress, which is one mechanism responsible for the patho-

physiology of stress-associated disorders such as mel-

ancholic depression.

5. CRH, NPY, and antidepressants

The classical mechanism of action of TCAs is to inhibit

the uptake of norepinephrine (NE) and/or serotonin. Chronic

administration of TCAs decreases NE biosynthesis, TH

activity, and TH mRNA in the LC (see, for review; Brady,

1994). Consequently, chronic TCAs treatment decreased

basal CRH mRNA in the PVN and the pituitary–adrenocort-

ical axis (Brady et al., 1991). We have also shown that CRH

and AVP mRNA responses to immobilization were reduced

following chronic desipramine treatment (Makino et al.,

unpublished observations). On the other hand, it has been

proposed that a novel mechanism to decrease the HPA axis by

TCAs is an up-regulation of corticosteroid receptors in the

various brain regions, resulting in the potentiation of gluco-

corticoid-mediated negative feedback on the ACTH secreta-

gogues in the PVN (Barden et al., 1995). It is of interest that

these mechanisms of TCAs’ action are opposite to the effects

of chronic stress; the possible effects are to mitigate the above

mentioned multiple feedback loop forming the vicious circle

to activate central CRH systems, although its effects on the

amygdaloid CRH system are presently uncertain.

NPY is another key molecule involved in the regulation

of food intake and the modulation of the HPA axis (Dallman

et al., 1993), thus, is potentially related to the pathophysi-

ology of stress-associated disorders. We found that repeated

immobilization stress resulted in the pronounced reduction

of food intake and body weight (Makino et al., 1999a). As

noted, CRH mRNA in the PVN increased following

repeated immobilization, presumably causing appetite loss

in repeatedly stressed rats. During repeated immobilization

for 7 days, NPY mRNA in the hypothalamic arcuate nucleus

(ARC) also increased, suggesting a compensatory response

to retain appetite (Makino et al., 1999a). Although 4 days of

repeated immobilization did not induce a significant in-

crease in NPY mRNA in the ARC, treatment of TCAs,

desipramine, potentiated the stress-induced rise in ARC

NPY mRNA expression (Makino et al., 2000). Our findings

suggest that a failure of stress-induced activation of ARC

NPY could contribute to the clinical manifestation of stress-

associated disorders, especially anorexia. Furthermore, in

the light of the data indicating that NPY can exert anxiolytic

effects via Y1 receptors (Heilig et al., 1989, 1994; Wahles-

tedt et al., 1993), a possible deficiency in response of

ARC NPY may exacerbate hyperarousal and anxiety. In

mitigating the pathological hyperarousal and anorexia of

stress-associated disorders, TCAs seem able to shift the

hypothalamic neuroendocrine function from a predominant

CRH-mediated catabolic effector status to a more NPY-

mediated anabolic effector status.

6. Perspectives

In the 1990s, a CRH-related peptide, urocortin (Vaughan

et al., 1995), and a novel subtype of CRH receptor, CRHR-2

(Kishimoto et al., 1995; Lovenberg et al., 1995; Perrin et al.,

1995; Stenzel et al., 1995), were subsequently discovered.

Selective nonpeptidergic CRHR-1 antagonists have also

been developed (Arborelius et al., 2000; Habib et al.,

2000; Heinrichs and DeSouza, 1999; Higuchi et al., 2000;

Keck et al., 2001; Okuyama et al., 1999; Otagiri et al., 2000)

and have been on trial in humans (Willenberg et al., 2000;

Zobel et al., 2000). Recently in 2001, novel CRH-related

peptides, urocortin-II (Reyes et al., 2001), urocortin III

(Lewis et al., 2001), or stresscopin (Hsu and Hsueh, 2001),

have been identified as selective agonists of CRHR-2. On the

other hand, selective CRHR-1 (Smith et al., 1998; Timple

et al., 1998; Contarino et al., 1999; Bradbury et al., 2000;

Contarino et al., 2000; Muller et al., 2000a,b) or CRHR-2

(Bale et al., 2000; Coste et al., 2000; Kishimoto et al., 2000)

knock-out or compound CRHR1/CRHR2 mutant (Bale et al.,

2002; Preil et al., 2001) has been developed in mice. These

discoveries may provide new means to differentiate exact

roles of CRHR-1 and CRHR-2 in the CNS (Smagin and

Dunn, 2000), and provide new insights into the involvement

of CRH and CRH-related peptides in the stress-associated

disorders. Furthermore, revealing more precise mechanisms

of persistent activation of systems of central CRH and CRH-

related peptides could lead to the development of more

effective drugs for stress-associated disorders by shutting

down the vicious circle via multiple feedback loops upon

these systems, by the functional modulation of either cortico-

steroid receptors or CRH receptors. In this respect, apart

from genetic predisposition, early environmental and mater-

nal care are known to affect brain corticosteroid receptor

numbers and the HPA axis responsiveness in adulthood in

rodents (see, for review, Caldji et al., 2000; Meaney, 2001).

This indicates the importance of early life events not only as

forming individual differences, but also as a prophylaxis

against stress-associated disorders.
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